Source : http://www.kernel.org/doc/Documentation/filesystems/proc.txt
cat /proc/meminfo MemTotal: 16344972 kB MemFree: 13634064 kB Buffers: 3656 kB Cached: 1195708 kB SwapCached: 0 kB Active: 891636 kB Inactive: 1077224 kB HighTotal: 15597528 kB HighFree: 13629632 kB LowTotal: 747444 kB LowFree: 4432 kB SwapTotal: 0 kB SwapFree: 0 kB Dirty: 968 kB Writeback: 0 kB AnonPages: 861800 kB Mapped: 280372 kB Slab: 284364 kB SReclaimable: 159856 kB SUnreclaim: 124508 kB PageTables: 24448 kB NFS_Unstable: 0 kB Bounce: 0 kB WritebackTmp: 0 kB CommitLimit: 7669796 kB Committed_AS: 100056 kB VmallocTotal: 112216 kB VmallocUsed: 428 kB VmallocChunk: 111088 kB
The CommitLimit is calculated with the following formula : CommitLimit = ('vm.overcommit_ratio' * Physical RAM) + Swap For example, on a system with 1G of physical RAM and 7G of swap with a `vm.overcommit_ratio` of 30 it would yield a CommitLimit of 7.3G. For more details, see the memory overcommit documentation in vm/overcommit-accounting.
The committed memory is a sum of all of the memory which has been allocated by processes, even if it has not been "used" by them as of yet. A process which malloc()'s 1G of memory, but only touches 300M of it will only show up as using 300M of memory even if it has the address space allocated for the entire 1G. This 1G is memory which has been "committed" to by the VM and can be used at any time by the allocating application. With strict overcommit enabled on the system (mode 2 in 'vm.overcommit_memory'), allocations which would exceed the CommitLimit (detailed above) will not be permitted. This is useful if one needs to guarantee that processes will not fail due to lack of memory once that memory has been successfully allocated.VmallocTotal: total size of vmalloc memory area